2023
DOI: 10.3389/frwa.2023.1137110
|View full text |Cite
|
Sign up to set email alerts
|

Super-resolution and uncertainty estimation from sparse sensors of dynamical physical systems

Abstract: The goal of this study is to leverage emerging machine learning (ML) techniques to develop a framework for the global reconstruction of system variables from potentially scarce and noisy observations and to explore the epistemic uncertainty of these models. This work demonstrates the utility of exploiting the stochasticity of dropout and batch normalization schemes to infer uncertainty estimates of super-resolved field reconstruction from sparse sensor measurements. A Voronoi tessellation strategy is used to o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 49 publications
0
0
0
Order By: Relevance