The resolution of light microscopy was thought to be limited to 250-300 nanometers based on the work of Ernest Abbe. This Abbe diffraction limit was believed to be insurmountable until the invention of Super-resolution microscopic techniques in the late 20th century. These techniques remove this limit and have provided unprecedented detail of cellular structures and dynamics down to several nanometers. An emerging goal in this field is to quantitatively measure individual molecules. Measurement of single-molecule dynamics, such as diffusion coefficients and complex stoichiometries, can be accomplished using fluorescence fluctuation techniques to reveal nanosecond-to-microsecond temporal reactions. These powerful complimentary experimental approaches are made possible by sensitive low-light photodetectors. In this chapter, an overview of the principles of super-resolution and single-molecule microscopies are provided. The different types of photodetectors employed in these techniques are explained. In addition, the advantages and disadvantages for these detectors are discussed, as well as the development of next generation detectors. Finally, example super-resolution and single-molecule cellular studies that take advantage of these detector technologies are presented.