Nuclear magnetic resonance (NMR) is a versatile method that non-invasively provides detailed insights into the atomic and molecular information of samples containing non-zero spin nuclei, facilitating observations of their structure, dynamics, and interactions. By miniaturizing NMR systems, micro-NMR (µ-NMR) devices overcome the limitations of traditional bulky NMR instruments, making them more portable, cost-effective, and suitable for a wide range of applications. As such, this review aims to provide a comprehensive overview of the recent advancements and potential applications of µ-NMR in the field of biomedicine. Beginning with an overview of the principles underlying NMR, this paper explains the fundamental concepts essential for understanding µ-NMR technology. It then delves into miniaturization techniques, detailing advancements in microcoils and probes and the development and integration with microfluidics, which have enhanced the sensitivity, portability, and versatility of µ-NMR devices. Ultimately, this review discusses the current biomedical applications of µ-NMR, including molecular imaging, metabolomics, biomarker detection, and point-of-care diagnosis, and highlights the potential of this technology to revolutionize precision medicine and healthcare. Despite the promising applications, challenges such as sensitivity, spectral resolution, and integration with other technologies are discussed, along with recent advances and innovations aimed at addressing these limitations.