Flexible metallic interconnects are highly important in the emerging field of deformable/wearable electronics. In our previous work [Arafat et al., Appl. Phys. Lett. 107, 081906 (2015)], interconnect films of Indium metal, periodically bonded to an elastomer substrate using a thin discontinuous/ cracked adhesion interlayer of Cr, were shown to sustain a linear strain of 80%-100% without failure during repeated cycling. In this paper, we investigate the mechanisms that allow such films to be stretched to a large strain without rupture along with strategies to prevent a deterioration in their electrical performance under high linear strain. Scanning Electron Microscopy and Digital Image Correlation are used to map the strain field of the Cr adhesion interlayer and the In interconnect film when the elastomer substrate is stretched. It is shown that the Cr interlayer morphology, consisting of islands separated by bi-axial cracks, accommodates the strain primarily by widening of the cracks between the islands along the tensile direction. This behavior is shown to cause the strain in the In interconnect film to be discontinuous and concentrated in bands perpendicular to the loading direction. This localization of strain at numerous periodically spaced locations preempts strain-localization at one location and makes the In film highly stretchable by delaying rupture. Finally, the elastic-plastic mismatch-driven wrinkling of the In interconnect upon release from first loading cycle is utilized to delay the onset of plasticity and allow the interconnect to be stretched repeatedly up to 25% linear strain in subsequent cycles without a deterioration of its electrical performance.