Abstract. The inclined incidence of the acoustic wave on a layer of gas-droplet mixture or bubbly liquid of finite thickness is theoretically investigated. In the case of the incidence of the low-frequency acoustic wave to interface between the pure gas and aerosol or to interface between pure liquid and bubbly liquid the basic laws of reflection and transmission of a wave are established. This circumstance allows us to evaluate the transmission and reflection coefficients, depending on the volume content of inclusions and the angle of incidence of the acoustic wave. In particular, for the interface between pure gas and aerosol analytical expressions of the critical angle of wave incidence at which reflection coefficient becomes zero are obtained, i.e. thus there is a complete passage of the acoustic wave through the interface. It is established that the increase of the angle of incidence of the acoustic wave on the boundary or layer of aerosol causes: first, either to increase or to decrease of the reflection coefficient at low frequencies, and second, to appearance of additional minima depending on the reflection coefficient from frequency of disturbances related to the difference of speed of sound and density of the medium.