Microscopic levitated objects are a promising platform for inertial sensing, testing gravity at small scales, optomechanics in the quantum regime, and large-mass superpositions. However, existing levitation techniques harnessing optical and electrical fields suffer from noise induced by elevated internal temperatures and charge noise, respectively. Meissner-based magnetic levitation circumvents both sources of decoherence but requires cryogenic environments. Here, we characterize a sub-milligram ferromagnetic cube levitated in an alternating-current planar magnetic Paul trap at room temperature. We show behavior in line with the Mathieu equations and quality factors of up to 2500 for the librational modes. Besides technological sensing applications, this technique sets out a path for megahertz librational modes in the micrometer-sized particle limit and can be extended by implementing superconducting traps in cryogenic environments, allowing for magnetic coupling to superconducting circuits and spin-based quantum systems.