Carbon has an extraordinary ability to bind with itself and other elements, resulting in unique structures for a wide range of applications. Recently, intensive research has been focused on the properties of carbon‐based materials (CBMs) and on increasing their performance by doping them with metals and non‐metallic elements. While materials with excellent performance have been experimentally achieved, a fundamental knowledge of the relationship between the electronic, physical, and electrochemical properties and their structural features, particularly the chemistry of carbon‐based materials remains a top challenge. This review begins with the doping chemistries of CBMs, covering the role of electron affinity, orbital chemistry, the chemistry of band gap, conductivity, bonding type, spin redistribution, and conducting relevant comparisons. These will lead to providing an in‐depth understanding of the overall picture in the CBMs doping chemistry particularly as catalysts. The future research prospects and challenges for doped CBMs are highlighted.