The interacting disordered electron problem is reviewed with emphasis on the quantum phase transitions that occur in a model system and on the field-theoretic methods used to describe them. An elementary discussion of conservation laws and diffusive dynamics is followed by a detai1ed derivation of the extended nonlinear sigma model, which serves as an effective field theory for the problem. A general scaling theory of metal-insulator and related transitions is developed, and explicit renormalization-group calculations for the various universality classes are reviewed and compared with experimental results. A discussion of pertinent physical ideas and phenomenological approaches to the metal-insulator transition not contained in the sigma-model approach is given, and phase-transition aspects of related problems, like disordered superconductors and the quantum Hall effect, are discussed. The review concludes with a list of open problems.