The Roth's two-pole approximation has been used by the present authors to study the effects of the hybridization in the superconducting properties of a strongly correlated electron system. The model used is the extended Hubbard model which includes the d − p hybridization, the p-band and a narrow d-band. The present work is an extension of the previous Ref. [3]. Nevertheless, some important correlation functions necessary to estimate the Roth's band shift, are included together with the temperature T and the Coulomb interaction U to describe the superconductivity. The superconducting order parameter of a cuprate system, is obtained following Beenen and Edwards formalism. Here, we investigate in detail the change of the order parameter associated to temperature, Coulomb interaction and Roth's band shift effects on superconductivity. The phase diagram with Tc versus the total occupation numbers nT , shows the difference respect to the previous work.