We present a systematic study of Au charge state distributions (CSDs) from low density, nonlocal thermodynamic equilibrium plasmas created in the Livermore electron beam ion traps (EBIT-I and EBIT-II). X-ray emission from Ni-like to Kr-like Au ions has been recorded from monoenergetic electron beam plasmas having E beam = 2.66, 2.92, 3.53 and 4.54 keV, and the CSDs of the beam plasmas have been inferred by fitting the collisionally excited line transitions and radiative recombination emission features with synthetic spectra. We have modeled the beam plasmas using a collisional-radiative code with various treatments of the atomic structure for the complex M-and N-shell ions, and find that only models with extensive doubly excited states can properly account for the dielectronic recombination (DR) channels that control the CSDs. This finding would be unremarkable for plasmas with thermal electron distributions, where many such states are sampled, and the importance of DR is well established. But in an EBIT source, the beam is resonant with only a subset of such states that have spectator electrons in orbitals with high principal quantum number n (8 ≤ n ≤ 20). The inclusion in the model of such states was also necessary to obtain agreement with observed stabilizing transitions in the x-ray spectra.