2015
DOI: 10.1007/s11401-015-0902-z
|View full text |Cite
|
Sign up to set email alerts
|

Superderivation algebras of modular Lie superalgebras of O-type

Abstract: The authors consider a family of finite-dimensional Lie superalgebras of O-type over an algebraically closed field of characteristic p > 3. It is proved that the Lie superalgebras of O-type are simple and the spanning sets are determined. Then the spanning sets are employed to characterize the superderivation algebras of these Lie superalgebras. Finally, the associative forms are discussed and a comparison is made between these Lie superalgebras and other simple Lie superalgebras of Cartan type.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?