2014
DOI: 10.1103/physrevb.89.121411
|View full text |Cite
|
Sign up to set email alerts
|

Superfluid-insulator transition of quantum Hall domain walls in bilayer graphene

Abstract: We consider the zero-filled quantum-Hall ferromagnetic state of bilayer graphene subject to a kink-like perpendicular electric field, which generates domain walls in the electronic state and lowenergy collective modes confined to move along them. In particular, it is shown that two pairs of collective helical modes are formed at opposite sides of the kink, each pair consisting of modes with identical helicities. We derive an effective field-theoretical model of these modes in terms of two weakly coupled anisot… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
15
0

Year Published

2014
2014
2021
2021

Publication Types

Select...
6
1

Relationship

4
3

Authors

Journals

citations
Cited by 10 publications
(15 citation statements)
references
References 51 publications
0
15
0
Order By: Relevance
“…29,30, in these works only the spin symmetry was considered in the bosonization, and the conclusion of Ref. 29,30 was that the system is equivalent to a 1d spin model. Here we stress that, both the U (1) s and U (1) c symmetries are crucial to define the BSPT state: i.e.…”
mentioning
confidence: 99%
“…29,30, in these works only the spin symmetry was considered in the bosonization, and the conclusion of Ref. 29,30 was that the system is equivalent to a 1d spin model. Here we stress that, both the U (1) s and U (1) c symmetries are crucial to define the BSPT state: i.e.…”
mentioning
confidence: 99%
“…Each of the sectors may undergo a QPT of distinct type, associated with the breaking of U (1) and Z 2 symmetries, respectively. In the quantum fluctuations regime, the antisymmetric mode (best represented in terms of nearly-free Fermions) exhibits an Ising-type QPT 21,22 . Under the extra assumption of commensurate Boson density on the lattice, the symmetric mode exhibits a Berezinskii-Kosterlitz-Thouless (BKT) transition 24,25 from a Luttinger Liquid (LL) to a Mott insulator.…”
Section: Introduction and Principal Resultsmentioning
confidence: 99%
“…In a wide range of parameters surrounding the self-duality point K − = 2, g φ = g θ (accessible for U ∼ ρ s in Eq. ( 2) and J ∼ V ρ 2 0 ), both of them are simultaneously relevant and the SDSG is effectively described as two independent transverse-field Ising models, one of which is highly massive 22,32 . The low-energy description is therefore given in terms of a single pair of Majorana fields ξ R , ξ L :…”
Section: The Modelmentioning
confidence: 99%
“…(1) in the basis {|n,m ,n 0,m −n}, keeping only states consistent with a particular choice of ν in Eq. (9). For convenience, we have set to be unity and adopt v F k θ as our unit of energy.…”
Section: Landau Levels In a Circular Gaugementioning
confidence: 99%
“…The most common configuration, Bernal (AB) stacking, can be turned into a band insulator by application of an interlayer bias, and this behavior allows the generation of domain walls with topologically nontrivial electronic properties, both in zero [5][6][7] and in finite [8,9] magnetic fields. At the other extreme, AA-stacked graphene bilayers [10] can be created and should support interesting electronic phases [11,12].…”
Section: Introductionmentioning
confidence: 99%