As early as 1975, Pitzer suggested that copernicium, flerovium and oganesson are volatile substances behaving noble-gas like because of their closed-shell configurations and accompanying relativistic effects. It is, however, precarious to predict the chemical bonding and physical behavior of a solid by knowledge of the atomic or molecular properties only. Copernicium and oganesson have been analyzed very recently by our group. Both are predicted to be semi-conductors and volatile substances with rather low melting and boiling points, which may justify a comparison with the noble gas elements. Here we study closed-shell flerovium in detail to predict solid-state properties including the melting point from a decomposition of the total energy into many-body forces derived from relativistic coupled-cluster and from density functional theory. The convergence of such a decomposition for flerovium is critically analyzed, and the problem of using density functional theory is highlighted. We predict that flerovium is in many ways not behaving like a typical noble gas element despite its closed-shell 7$p_{1/2}^2$ configuration and resulting weak interactions. Unlike for the noble gases, the many-body expansion in terms of the interaction energy is not converging smoothly. This makes the accurate prediction of phase transitions very difficult. Nevertheless, a first prediction by Monte-Carlo simulation estimates the melting point at $284\pm 50$ K. Furthermore, calculations for the electronic band gap suggests that flerovium is a semi-conductor similar to copernicium