Fluorosilicone polymer is a new type of structure of the fluorine silicon block polymer. Because it combines the excellent properties of organic silicone and organic fluorine compounds, it has a wide range of uses and becomes a hot issue in the field of materials. In the paper, A series of novel poly(2,2,3,4,4,4-hexafluorobutyl methacrylate)-blockpoly(dimethylsiloxane)-block-poly(2,2,3,4,4,4-hexafluorobutyl methacrylate)s (PHFBMA-b-PDMS-b-PHFBMA) were synthesized by atom transfer radical polymerization (ATRP) with different molecular weight prepared polydimethylsiloxane macroinitiator as raw materials. The effects of the fluorine and silicone content on the hydrophobic and oleophobic properties of prepared triblock copolymers were also investigated. The structure and composition of the copolymers were analyzed and identified by infrared spectroscopy (IR) and nuclear magnetic resonance (NMR). The average molecular weight and molecular weight distribution of the prepared PHFBMA-b-PDMS-b-PHFBMA were evaluated by gel permeation chromatography (GPC). The surface energy of the triblock copolymers was calculated from the contact angle reaches as low as 10.43 mN/m through the Owens-Wendt-Rabel-Kaelble method, with the fluorine content of triblock polymer was 19.0 wt%. Atomic force microscopy (AFM), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS) indicated that there were Obvious nanoscopically microphase separation on the surface of the prepared triblock copolymers and the fluoride contents in the block polymer of the fluorine silicon block were more likely to migrate to the surface.