The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials.particle adhesion and removal | water-repellant insect wings | nanostructured interfaces | capillary forces B oth natural and synthetic superhydrophobic surfaces are believed to achieve self-cleaning by the so-called "lotus effect" (1, 2). The lotus effect typically refers to the removal of the contaminating particles by impacting and/or rolling water droplets (1, 3). The superhydrophobicity is important because of the associated large contact angle and small hysteresis (4), which promotes the rolling motion carrying away contaminants. According to the conventional wisdom of the lotus effect, the self-cleaning function will cease without incoming droplets or favorable external forces, posing severe restrictions for practical applications of superhydrophobic materials.Here, we demonstrate an autonomous mechanism to achieve self-cleaning on superhydrophobic surfaces, where the contaminants are removed by self-propelled jumping condensate powered by surface energy. When exposed to condensing water vapor, the contaminating particles are either fully enclosed or partially covered with the resulting liquid condensate. Building upon our previous publications showing self-propelled jumping upon drop coalescence (5, 6), we show particle removal by the merged condensate drop with a size comparable to or larger than that of the contaminating particle(s). Further, we report a distinct jumping mechanism upon particle aggregation, without a condensate drop of comparable size to that of the particles, where a group of particles exposed to water condensate clusters together by capillarity and self-propels away from the superhydrophobic surface.The jumping-condensate mechanism reported here offers a unique route toward self-cleaning, with potential applications ranging from microelectronic wafer cleaning to heat exchanger maintenance (7). Particle removal is often accomplished in a gas flow or a liquid stream by hydrodynamic shear stresses, which are parallel to the surface. The parallel hydrodynamic forces are not ideal in competing against the adhesive mech...