“…Analogously, considering non-equivalent three dimensional subalgebras D, P 3 , L 3 , D, P 1 , P 2 , L 1 , L 2 , L 3 , L 3 , P 1 , P 2 (A4) P 1 , P 2 , P 3 , L 3 + P 3 , P 1 , P 2 , D + µL 3 , P 1 , P 2 , µ > 0 (A5) we obtain potentials presented in Items 11-14 and recover once more the cases given in Items 7,8,10. Notice that now we have also a simple algebra so(3) realized by L 1 , L 2 and L 3 .…”