Mechanical metamaterials with multi‐level dynamic crushing effects (MM‐MLs) are designed in this study through coordinate transformation and mirror arrays. The mechanical effects of the diameter and length ratio of the struts and connecting rods, the Euler angles, and the cell numbers on the mechanical properties are investigated separately. MM‐ML can exhibit significant two‐level platform stress, and the local cells in the first platform stress stage undergo rotational motion, while the second platform stress stage mainly involves collapse compression and bending. Although increasing the length of the connecting rods can increase the range of Poisson's ratio, it will reduce the level of platform stress and energy absorption. Increasing the Euler angle will reduce the strain interval of the first platform stress and can improve the energy absorption capacity. In addition, increasing the cell number while maintaining a constant relative density can effectively enhance energy absorption. MM‐ML has significant parameter controllability, can achieve different platform stress regions, different ranges of Poisson's ratios, and energy absorption requirements according to the application scenario, and can demonstrate functional diversity compared to existing research. The design scheme can provide ideas for adaptive crushing protection requirements.