Challenges investigating
molecules on plasmonic nanostructures
have limited understanding of these interactions. However, the chemically
specific information in the surface-enhanced Raman scattering (SERS)
spectrum can identify perturbations in the adsorbed molecules to provide
insight relevant to applications in sensing, catalysis, and energy
conversion. Here, we demonstrate spectrally resolved SERS imaging,
to simultaneously image and collect the SERS spectra from molecules
adsorbed on individual nanoparticles. We observe intensity and frequency
fluctuations in the SERS signal on the time scale of tens of milliseconds
from
n
-mercaptobenzoic acid (MBA) adsorbed to gold
nanoparticles. The SERS signal fluctuations correlate with density
functional theory calculations of radicals generated by the interaction
between MBA and plasmon-generated hot electrons. Applying localization
microscopy to the data provides a super-resolution spectrally resolved
map that indicates the plasmonic-induced molecular charging occurs
on the extremities of the nanoparticles, where the localized electromagnetic
field is reported to be most intense.