The superpixel-based multiple kernels model uses the average value of all pixels within superpixel as the spatial feature, which results in inaccurate extraction of edge pixels. To solve this problem, a local binary patterns and superpixel-based multiple kernels method is proposed for hyperspectral image (HSI) classification. First, the original HSI is segmented into multiple superpixels by using the entropy rate superpixel segmentation algorithm. On the HSI with superpixel index, the spectral kernel is second obtained by combining the spectral feature map with the radial basis kernel (RBF). By introducing local binary pattern (LBP) and weighted average filtering into RBF, the spatial kernels are obtained within and among superpixels. Finally, the combined kernel containing the abovementioned three kernels is inputted into the support vector machine classifier to generate a classification map. The experimental procedure in this article uses LBP to extract the information in superpixels, which effectively prevents the loss of edge features in superpixels. The experimental results show that the proposed method is superior to the state-of-the-art classifiers for HSI classification.