It is widely accepted that the dominant deformation mechanism of fine-grained superplasticity is through grain boundary sliding (GBS) that occurs in fine-grained materials. However, it has been reported that in “Class I” solid solution alloys, superplastic-like behavior controlled by trans-granular deformation occurs by solute drag creep. In this study, we have investigated superplastic behavior in a fine-grained aluminum solid solution alloy with a thermally unstable microstructure. To obtain fine-grained microstructure, friction stir processing (FSP) was applied to a commercial 5083 aluminum (Al−Mg) alloy. An equiaxial fine-grained microstructure with a grain size of 7.4 μm was obtained after FSP; however, this microstructure was unstable at high temperatures. Generally, for fine-grained superplasticity or GBS to occur or continue, the fine-grained microstructure must be smaller than 10 μm during high-temperature deformation. However, a large elongation of over 200% was observed at high temperatures despite the occurrence of grain growth. From microstructural observations, it was determined that a fine-grained microstructure is maintained in the early stage of deformation, but at strain levels greater than 100%, trans-granular deformation occurs. The microstructural feature of this trans-granular deformation is similar to the deformation microstructure of solute drag creep observed in “Class I” solid solution alloys. This indicates that a change in the deformation mechanism from GBS to solute drag creep takes place during high-temperature deformation. Here, based on our observations on our model system, which is a thermally unstable aluminum solid solution alloy, we discuss the possibility of a superplastic elongation occurring by means of a transition of the deformation mechanism.