2024
DOI: 10.1609/aaai.v38i14.29502
|View full text |Cite
|
Sign up to set email alerts
|

Superposed Atomic Representation for Robust High-Dimensional Data Recovery of Multiple Low-Dimensional Structures

Yulong Wang

Abstract: This paper proposes a unified Superposed Atomic Representation (SAR) framework for high-dimensional data recovery with multiple low-dimensional structures. The data can be in various forms ranging from vectors to tensors. The goal of SAR is to recover different components from their sum, where each component has a low-dimensional structure, such as sparsity, low-rankness or be lying a low-dimensional subspace. Examples of SAR include, but not limited to, Robust Sparse Representation (RSR), Robust Principal Com… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?