Superposed Atomic Representation for Robust High-Dimensional Data Recovery of Multiple Low-Dimensional Structures
Yulong Wang
Abstract:This paper proposes a unified Superposed Atomic Representation (SAR) framework for high-dimensional data recovery with multiple low-dimensional structures. The data can be in various forms ranging from vectors to tensors. The goal of SAR is to recover different components from their sum, where each component has a low-dimensional structure, such as sparsity, low-rankness or be lying a low-dimensional subspace. Examples of SAR include, but not limited to, Robust Sparse Representation (RSR), Robust Principal Com… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.