We consider the gauged free fermionic matrix model, for a single fermionic matrix. In the large N limit this system describes a c = 1/2 chiral fermion in 1 + 1 dimensions. The Gauss' law constraint implies that to obtain a physical state, indices of the fermionic matrices must be fully contracted, to form a singlet. There are two ways in which this can be achieved: one can consider a trace basis formed from products of traces of fermionic matrices or one can consider a Schur function basis, labeled by Young diagrams. The Schur polynomials for the fermions involve a twisted character, as a consequence of Fermi statistics. The main result of this paper is a proof that the trace and Schur bases coincide up to a simple normalization coefficient that we have computed.