2022
DOI: 10.1007/s10468-022-10165-y
|View full text |Cite
|
Sign up to set email alerts
|

Superpotentials and Quiver Algebras for Semisimple Hopf Actions

Abstract: We consider the action of a semisimple Hopf algebra H on an m-Koszul Artin–Schelter regular algebra A. Such an algebra A is a derivation-quotient algebra for some twisted superpotential w, and we show that the homological determinant of the action of H on A can be easily calculated using w. Using this, we show that the smash product A#H is also a derivation-quotient algebra, and use this to explicitly determine a quiver algebra Λ to which A#H is Morita equivalent, generalising a result of Bocklandt–Schedler–We… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 32 publications
0
0
0
Order By: Relevance