Abstract:We consider a formulation of supervised learning that endows models with robustness to distributional shifts from training to testing. The formulation hinges upon the superquantile risk measure, also known as the conditional value-at-risk, which has shown promise in recent applications of machine learning and signal processing. We show that, thanks to a direct smoothing of the superquantile function, a superquantile-based learning objective is amenable to gradient-based optimization, using batch optimization a… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.