In the past decade, technological developments in materials and computer sciences have evolved to the point where their synergistic combination have culminated in a new field of multidisciplinary research in adaptation. The advances in material sciences have provided a comprehensive and theoretical framework for implementing multifunctionality in materials, and the development of high speed digital computers has permitted transforming that framework into methodologies for practical design and production. The concept is elementary: a highly integrated sensor system provides data on the structural environment to a processing and control system which in turn signals integrated actuators to modify the structural properties appropriately.
Multifunctional materials embedded in adaptive composite systems have presented exceptional promise in engineering design problems that require solutions in active vibration suppression, shape control, and noise attenuation. Piezoelectric materials, shape memory alloys, and magnetostrictive materials are the three most recognized types. These materials develop strains or displacements when exposed to electric, thermal, and magnetic fields, respectively.