Consider two identical atoms in a spherical harmonic oscillator interacting with a zero-range interaction which is tuned to produce an s-wave zero-energy bound state. The quantum spectrum of the system is known to be exactly solvable. We note that the same partial wave quantum spectrum is obtained by the one-dimensional scale-invariant inverse square potential. Long known as the Calogero–Sutherland–Moser (CSM) model, it leads to the fractional exclusion statistics (FES) of Haldane and Wu. The statistical parameter is deduced from the analytically calculated second virial coefficient. When FES is applied to a Fermi gas at unitarity, it gives good agreement with experimental data without the use of any free parameter.