Calculations of the gravitational self-force (GSF) on a point mass in curved spacetime require as input the metric perturbation in a sufficiently regular gauge. A basic challenge in the program to compute the GSF for orbits around a Kerr black hole is that the standard procedure for reconstructing the metric perturbation is formulated in a class of "radiation" gauges, in which the particle singularity is non-isotropic and extends away from the particle's location. Here we present two practical schemes for calculating the GSF using a radiation-gauge reconstructed metric as input. The schemes are based on a detailed analysis of the local structure of the particle singularity in the radiation gauges. We show that three types of radiation gauge exist: two containing a radial string-like singularity emanating from the particle, either in one direction ("half-string" gauges) or both directions ("full-string" gauges); and a third type containing no strings but with a jump discontinuity (and possibly a delta function) across a surface intersecting the particle. Based on a flat-space example, we argue that the standard mode-by-mode reconstruction procedure yields the "regular half" of a half-string solution, or (equivalently) either of the regular halves of a no-string solution. For the half-string case, we formulate the GSF in a locally deformed radiation gauge that removes the string singularity near the particle. We derive a mode-sum formula for the GSF in this gauge, which is analogous to the standard Lorenz-gauge formula but requires a correction to the values of the regularization parameters. For the no-string case, we formulate the GSF directly, without a local deformation, and we derive a mode-sum formula that requires no correction to the regularization parameters but involves a certain averaging procedure. We explain the consistency of our results with Gralla's invariance theorem for the regularization parameters, and we discuss the correspondence between our method and a related approach by Friedman et al.