A new fuzzy logic hydrometeor classification algorithm is proposed that takes into account data-based membership functions, measurement conditions, and three-dimensional temperature information provided by a high-resolution nonhydrostatic numerical weather prediction model [the Application of Research to Operations at Mesoscale model (AROME)]. The formulation of the algorithm is unique for X-, C-, and S-band radars and employs wavelength-adapted bivariate membership functions for (Z H , Z DR ), (Z H , K DP ), and (Z H , r HV ) that were established by using real data collected by the French polarimetric radars and T-matrix simulations. The distortion of membership functions caused by deteriorating measurement conditions (e.g., precipitation-induced attenuation, signal-to-clutter ratio, signal-to-noise ratio, partial beam blocking, and distance) is documented empirically and subsequently parameterized in the algorithm. The result is an increase in the amount of overlapping between the membership functions of the different hydrometeor types. The relative difference between the probability function values of the first and second choice of the hydrometeor classification algorithm is analyzed as a measure of the quality of identification. Semiobjective scores are calculated using an expert-built validation dataset to assess the respective improvements brought by using ''richer'' temperature information and by using more realistic membership functions. These scores show a significant improvement in the detection of wet snow.