With the rapid development of social networks, spam bots and other anomaly accounts’ malicious behavior has become a critical information security problem threatening the social network platform. In order to reduce this threat, the existing research mainly uses feature-based detection or propagation-based detection, and it applies machine learning or graph mining algorithms to identify anomaly accounts in social networks. However, with the development of technology, spam bots are becoming more advanced, and identifying bots is still an open challenge. This paper proposes a new semi-supervised graph embedding model based on a graph attention network for spam bot detection in social networks. This approach constructs a detection model by aggregating features and neighbor relationships, and learns a complex method to integrate the different neighborhood relationships between nodes to operate the directed social graph. The new model can identify spam bots by capturing user features and two different relationships among users in social networks. We compare our method with other methods on real-world social network datasets, and the experimental results show that our proposed model achieves a significant and consistent improvement.