2011
DOI: 10.1142/s1469026811003197
|View full text |Cite
|
Sign up to set email alerts
|

Supervised Classification of White Blood Cells by Fusion of Color Texture Features and Neural Network

Abstract: Nucleus segmentation is one of important steps in the automatic white blood cell differential counting. In this paper, we proposed a technique to segment images of the nucleus. We analyze a set of white-blood-cell-nucleus-based features using color fuzzy texture spectrum (Base 5). We applied artificial neural network for classification. We compared the results with moment based features. The classification performances are evaluated by class wise classification rates. The results show that the features using n… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?