Supervised Clustering Loss for Clustering-Friendly Sentence Embeddings: an Application to Intent Clustering
Giorgio Barnabò,
Antonio Uva,
Sandro Pollastrini
et al.
Abstract:Modern virtual assistants are trained to classify customer requests into a taxonomy of predesigned intents. Requests that fall outside of this taxonomy, however, are often unhandled and need to be clustered to define new experiences. Recently, state-of-the-art results in intent clustering were achieved by training a neural network with a latent structured prediction loss. Unfortunately, though, this new approach suffers from a quadratic bottleneck as it requires to compute a joint embedding representation for … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.