Supervised machine learning algorithms to predict the duration and risk of long-term hospitalization in HIV-infected individuals: a retrospective study
Jialu Li,
Yiwei Hao,
Ying Liu
et al.
Abstract:ObjectiveThe study aimed to use supervised machine learning models to predict the length and risk of prolonged hospitalization in PLWHs to help physicians timely clinical intervention and avoid waste of health resources.MethodsRegression models were established based on RF, KNN, SVM, and XGB to predict the length of hospital stay using RMSE, MAE, MAPE, and R2, while classification models were established based on RF, KNN, SVM, NN, and XGB to predict risk of prolonged hospital stay using accuracy, PPV, NPV, spe… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.