The 2006 IEEE International Joint Conference on Neural Network Proceedings 2006
DOI: 10.1109/ijcnn.2006.247301
|View full text |Cite
|
Sign up to set email alerts
|

Supervised RBFNN Centers and Radii Initialization for Function Approximation Problems

Abstract: Radial Basis Function Neural Networks (RBFNNs) have been applied to solve problems of classification, function approximation and time series prediction. In the design of an RBFNN it is necessary to set the values for the positions of the centers and the radii for each RBF. In the literature it is usually performed an initialization step to set the positions of the centers and, once they are placed, the radii are calculated using a heuristic. In this paper, a new algorithm to set the value of those two paramete… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2010
2010
2016
2016

Publication Types

Select...
2
1
1

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 35 publications
0
1
0
1
Order By: Relevance
“…Entre las más usadas se encuentran la descomposición de Cholesky [31], la descomposición en valores singulares (Singular Vale Decomposition, SVD) [32] y el método de mínimos cuadrados ortogonales (Orthogonal Least Squares,OLS) [33]. Para dar un valor a los centros y los radios se diseñó el algoritmo OVI (Output Value-Based Initializer) [34,35], permitiendo dar un punto de partida adecuado, evitando caer en mínimos locales precipitadamente, para comenzar a realizar una búsqueda local que haga un ajuste fino de estos parámetros.…”
Section: Redes Neuronales De Funciones De Base Radialunclassified
“…Entre las más usadas se encuentran la descomposición de Cholesky [31], la descomposición en valores singulares (Singular Vale Decomposition, SVD) [32] y el método de mínimos cuadrados ortogonales (Orthogonal Least Squares,OLS) [33]. Para dar un valor a los centros y los radios se diseñó el algoritmo OVI (Output Value-Based Initializer) [34,35], permitiendo dar un punto de partida adecuado, evitando caer en mínimos locales precipitadamente, para comenzar a realizar una búsqueda local que haga un ajuste fino de estos parámetros.…”
Section: Redes Neuronales De Funciones De Base Radialunclassified
“…Centers and widths of RBF, weights of hidden layer and output layer are several important parameters for RBFNN. Traditionally, these parameters are pre-selected from training sets randomly or determined by supervised or unsupervised learning [10][11][12] . These methods are simple and convenient, but have some disadvantages such as poor performance, big size of network, depending on experience strongly, and so on.…”
Section: Applied Mechanics and Materials Vols 20-23mentioning
confidence: 99%