2020
DOI: 10.1142/s2717554520500113
|View full text |Cite
|
Sign up to set email alerts
|

Supervised Word Sense Disambiguation on Polysemy with Neural Network Models: A Case Study of BUN in Taiwan Hakka

Abstract: While word sense disambiguation (WSD) has been extensively studied in natural language processing, such a task in low-resource languages still receives little attention. Findings based on a few dominant languages may lead to narrow applications. A language-specific WSD system is in need to implement in low-resource languages, for instance, in Taiwan Hakka. This study examines the performance of DNN and Bi-LSTM in WSD tasks on polysemous BUNin Taiwan Hakka. Both models are trained and tested on a small amount o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?