Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
New U-Pb and 40Ar/39Ar ages integrated with geologic mapping and observations across the western Alaska Range constrain the distribution and tectonic setting of Cretaceous to Oligocene magmatism along an evolving accretionary plate margin in south-central Alaska. These rocks were emplaced across basement domains that include Neoproterozoic to Jurassic carbonate and siliciclastic strata of the Farewell terrane, Triassic and Jurassic plutonic and volcanic rocks of the Peninsular terrane, and Jurassic and Cretaceous siliciclastic strata of the Kahiltna assemblage. Plutonic rocks of different ages also host economic mineralization including intrusion-related Au, porphyry Cu-Mo-Au, polymetallic veins and skarns, and peralkaline intrusion-related rare-earth elements. The oldest intrusive suites were emplaced ca. 104–80 Ma into the Peninsular terrane only prior to final accretion. Deformation of the northern Kahiltna succession and underlying Farewell terrane occurred at ca. 97 Ma, and more widespread deformation ca. 80 Ma involved south-vergent folding and thrusting of the Kahiltna assemblage that records collisional accretion of the Peninsular-Wrangellia terrane and juxtaposition of sediment wedges formed on the inboard and outboard terranes. More widespread magmatism ca. 75–55 Ma occurred in two general pulses, each having distinct styles of localized deformation. Circa 75–65 Ma plutons were emplaced in a transpressional setting and stitch the accreted Peninsular and Wrangellia terranes to the Farewell terrane. Circa 65–55 Ma magmatism occurred across the entire range and extends for more than 200 km inboard from the inferred position of the continental margin. The Paleocene plutonic suite generally reflects shallower emplacement depths relative to older suites and is associated with more abundant andesitic to rhyolitic volcanic rocks. Deformation ca. 58–56 Ma was concentrated along two high-strain zones, the most prominent of which is 1 km wide, strikes east-northeast, and accommodated dextral oblique motion. Emplacement of widespread intermediate to mafic dikes ca. 59–51 Ma occurred before a notable magmatic lull from ca. 51–44 Ma reflecting a late Paleocene to early Eocene slab window. Magmatism resumed ca. 44 Ma, recording the transition from slab window to renewed subduction that formed the Aleutian-Meshik arc to the southwest. In the western Alaska Range, Eocene magmatism included emplacement of the elongate north-south Merrill Pass pluton and large volumes of ca. 44–37 Ma andesitic flows, tuffs, and lahar deposits. Finally, a latest Eocene to Oligocene magmatic pulse involved emplacement of a compositionally variable but spatially concentrated suite of magmas ranging from gabbro to peralkaline granite ca. 35–26 Ma, followed by waning magmatism that coincided with initiation of Yakutat shallow-slab subduction. Cretaceous to Oligocene magmatism throughout the western Alaska Range collectively records terrane accretion, translation, and integration together with evolving subduction dynamics that have shaped the southern Alaska margin since the middle Mesozoic.
New U-Pb and 40Ar/39Ar ages integrated with geologic mapping and observations across the western Alaska Range constrain the distribution and tectonic setting of Cretaceous to Oligocene magmatism along an evolving accretionary plate margin in south-central Alaska. These rocks were emplaced across basement domains that include Neoproterozoic to Jurassic carbonate and siliciclastic strata of the Farewell terrane, Triassic and Jurassic plutonic and volcanic rocks of the Peninsular terrane, and Jurassic and Cretaceous siliciclastic strata of the Kahiltna assemblage. Plutonic rocks of different ages also host economic mineralization including intrusion-related Au, porphyry Cu-Mo-Au, polymetallic veins and skarns, and peralkaline intrusion-related rare-earth elements. The oldest intrusive suites were emplaced ca. 104–80 Ma into the Peninsular terrane only prior to final accretion. Deformation of the northern Kahiltna succession and underlying Farewell terrane occurred at ca. 97 Ma, and more widespread deformation ca. 80 Ma involved south-vergent folding and thrusting of the Kahiltna assemblage that records collisional accretion of the Peninsular-Wrangellia terrane and juxtaposition of sediment wedges formed on the inboard and outboard terranes. More widespread magmatism ca. 75–55 Ma occurred in two general pulses, each having distinct styles of localized deformation. Circa 75–65 Ma plutons were emplaced in a transpressional setting and stitch the accreted Peninsular and Wrangellia terranes to the Farewell terrane. Circa 65–55 Ma magmatism occurred across the entire range and extends for more than 200 km inboard from the inferred position of the continental margin. The Paleocene plutonic suite generally reflects shallower emplacement depths relative to older suites and is associated with more abundant andesitic to rhyolitic volcanic rocks. Deformation ca. 58–56 Ma was concentrated along two high-strain zones, the most prominent of which is 1 km wide, strikes east-northeast, and accommodated dextral oblique motion. Emplacement of widespread intermediate to mafic dikes ca. 59–51 Ma occurred before a notable magmatic lull from ca. 51–44 Ma reflecting a late Paleocene to early Eocene slab window. Magmatism resumed ca. 44 Ma, recording the transition from slab window to renewed subduction that formed the Aleutian-Meshik arc to the southwest. In the western Alaska Range, Eocene magmatism included emplacement of the elongate north-south Merrill Pass pluton and large volumes of ca. 44–37 Ma andesitic flows, tuffs, and lahar deposits. Finally, a latest Eocene to Oligocene magmatic pulse involved emplacement of a compositionally variable but spatially concentrated suite of magmas ranging from gabbro to peralkaline granite ca. 35–26 Ma, followed by waning magmatism that coincided with initiation of Yakutat shallow-slab subduction. Cretaceous to Oligocene magmatism throughout the western Alaska Range collectively records terrane accretion, translation, and integration together with evolving subduction dynamics that have shaped the southern Alaska margin since the middle Mesozoic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.