In order to construct an efficient on-site communication network for an advanced metering infrastructure (AMI) in Korea, the high-speed power line communication (HS PLC), wireless smart utility network (Wi-SUN), and ZigBee modems are currently being used. In this paper, we first quantitatively analyze the communication performances of HS PLC, Wi-SUN, and ZigBee modems for AMI through both experimental testbeds and practical environment sites. For practical AMI sites, we selected 18 sites with 48 measurement points and classified the sites into five areas, and conducted measurements of signal and noise power spectra on the sites. We then derived linear regression models for received powers according to areas. Through the constructed models, we can efficiently choose an appropriate communication method and plan a methodology for building an AMI network depending on the area type. Furthermore, using the constructed regression models, we provided graphical simulation tools of received powers for both PLC and wireless communication methods based on a distribution information map.