2014 8th. Malaysian Software Engineering Conference (MySEC) 2014
DOI: 10.1109/mysec.2014.6986038
|View full text |Cite
|
Sign up to set email alerts
|

Support vector machine based approach for quranic words detection in online textual content

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0
1

Year Published

2017
2017
2023
2023

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 12 publications
(4 citation statements)
references
References 12 publications
0
3
0
1
Order By: Relevance
“…Karar Ağaçlarını kullanan [6], Yapay Sinir Ağları'ndan istifade eden [7], ve K-En Yakın Komşuluk yöntemini deneyen [8] bunlara örnek olarak gösterilebilir. Benzer şekilde [9]'da SVM sınıflandırma modeli kullanılmıştır. Ak-Kabi vd.…”
Section: Literatür öZetiunclassified
“…Karar Ağaçlarını kullanan [6], Yapay Sinir Ağları'ndan istifade eden [7], ve K-En Yakın Komşuluk yöntemini deneyen [8] bunlara örnek olarak gösterilebilir. Benzer şekilde [9]'da SVM sınıflandırma modeli kullanılmıştır. Ak-Kabi vd.…”
Section: Literatür öZetiunclassified
“…A growing number of data mining techniques have been applied to text classification problem, including the Bayes probabilistic approach [38], [39], decision trees [40], [41], neural networks [42], [43], support vector machines (SVM) [44], [45], [46], and k-nearest neighbor [47], [48]. In this preliminary study, three conventional classification algorithms [49]: nearest neighbor (k-NN), SVM, and naïve bayes classifiers are implemented for the labeling task.…”
Section: Classification Modelmentioning
confidence: 99%
“…Some of the existing works as found in literatures include: text classification applications on the Holy Quran [1,3,[11][12][13]; ontology-based applications [14][15][16][17]; digitized Holy Quran applications [18][19][20][21][22]. Furthermore, conventional among machine learning algorithms often implemented in ML tasks include: naïve bayes (NB) [4], decision trees (J48) [23], neural networks [24], support vector machines (SVM) [25], and k-nearest neighbour (k-NN) [26].…”
Section: Introductionmentioning
confidence: 99%