2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications 2006
DOI: 10.1109/cimsa.2006.250766
|View full text |Cite
|
Sign up to set email alerts
|

Support Vector Machine Detection of Peer-to-Peer Traffic

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0
1

Year Published

2009
2009
2015
2015

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(6 citation statements)
references
References 9 publications
0
5
0
1
Order By: Relevance
“…최근의 연구문헌 조사에 의하면, 애플리케이션의 변화에 대처할 수 있는 새로운 해결책으로써 데이터마이닝 및 기계 학습 기법을 인터넷 애플리케이션 트래픽 분류에 적용하려 는 시도가 성공적으로 진행 중이다 [3][4][5][6][7][8] …”
Section: 서 론unclassified
“…최근의 연구문헌 조사에 의하면, 애플리케이션의 변화에 대처할 수 있는 새로운 해결책으로써 데이터마이닝 및 기계 학습 기법을 인터넷 애플리케이션 트래픽 분류에 적용하려 는 시도가 성공적으로 진행 중이다 [3][4][5][6][7][8] …”
Section: 서 론unclassified
“…The behavioural method based on entropy reported in [11] requires the evaluation of the entropy of the packet sizes in a given time window and works on-the-fly. Several approaches requiring the analysis of some fields of the header of TCP or IP packets for flowbased P2P traffic detection have been proposed based on machine learning [10] [12], support vector machines [13] [14], and neural networks [15]. This kind of methods may be used for high-speed and real-time communications with encrypted traffic or unknown P2P protocols.…”
Section: Introductionmentioning
confidence: 99%
“…Nowadays, machine learning methods of traffic classification mainly include: SVM [8], naï ve Bayes [9], K-NN [10], K-means [11], C4.5 decision tree [12] etc. Support Vector Machine (SVM) is known to be one of the best machine learning algorithms to classify abnormal behaviors.…”
Section: Introductionmentioning
confidence: 99%