2016
DOI: 10.4137/ebo.s40912
|View full text |Cite
|
Sign up to set email alerts
|

Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures

Abstract: With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use tr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
14
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 10 publications
(15 citation statements)
references
References 77 publications
0
14
0
1
Order By: Relevance
“…Dalam melakukan penelitian ini, kami bertujuan untuk mendapatkan prediksi hasil pembelajaran berbasis e-learning yang lebih baik dari sebelumnya, yaitu menggunakan metode SVM. Algoritma SVM IJAIDM [3]. Inti dari menggunakan metode SVM merupakan salah satu dari yang paling banyak algoritma learning yang efisien, yang banyak digunakan untuk pengenalan pola sejak diperkenalkan pada tahun 1990-an.…”
Section: Pendahuluanunclassified
“…Dalam melakukan penelitian ini, kami bertujuan untuk mendapatkan prediksi hasil pembelajaran berbasis e-learning yang lebih baik dari sebelumnya, yaitu menggunakan metode SVM. Algoritma SVM IJAIDM [3]. Inti dari menggunakan metode SVM merupakan salah satu dari yang paling banyak algoritma learning yang efisien, yang banyak digunakan untuk pengenalan pola sejak diperkenalkan pada tahun 1990-an.…”
Section: Pendahuluanunclassified
“…If αi > 0, x1 is called a support vector b is a regulation parameter used to trade-off the training accuracy and the model complexity so that a superior generalization capability can be achieved. K is a kernel function, which is used to measure the similarity between two or much more samples [13].…”
Section: Data Of Another Classmentioning
confidence: 99%
“…Genetic algorithms were introduced in the 1970s as a class of evolutionary algorithms [22,24]. These are heuristic approaches that find solutions based on evolutionary biology concepts.…”
Section: Genetic Algorithmmentioning
confidence: 99%
“…These are heuristic approaches that find solutions based on evolutionary biology concepts. Genetic algorithms select a subset of features by removing unimportant features [22]. In this study the GA algorithm is also used to select best SVM kernel function.…”
Section: Genetic Algorithmmentioning
confidence: 99%
See 1 more Smart Citation