The ever-increasing demands on the efficiency and power density of power electronics converters lead to the replacement of traditional silicon-based components with new structures. One of the promising technologies represents devices based on Gallium-Nitride (GaN). Compared to silicon transistors, GaN semiconductor switches offer superior performance in high-frequency converters, since their fast switching process significantly decreases the switching losses. However, when used in hard-switched converters such as voltage-source inverters (VSI) for motor control applications, GaN transistors increase the power dissipated due to the current conduction. The loss increase is caused by the current-collapse phenomenon, which increases the dynamic drain-source resistance of the device shortly after the turn-on. This disadvantage makes it hard for GaN converters to compete with other technologies in electric drives. Therefore, this paper offers a purely software-based solution to mitigate the negative consequences of the current-collapse phenomenon. The proposed method is based on the minimum pulse length optimization of the classical 7-segment space-vector modulation (SVM) and is verified within a field-oriented control (FOC) of a three-phase permanent magnet synchronous motor (PMSM) supplied by a two-level GaN VSI. The compensation in the control algorithm utilizes an offline measured look-up table dependent on the machine input power.