Given the pressing depletion of lithium resources, sodium-ion batteries (SIBs) stand out as a cost-effective alternative for energy storage solutions in the near future. Layered transition metal oxides (LTMOs) emerge as the leading cathode materials for SIBs due to their superior specific capacities and abundant raw materials. Nonetheless, achieving long-term stability in LTMOs for SIBs remains a challenge due to the inevitable structural degradation during charge− discharge cycles. The complexity and diversity of cation configurations/superstructures within the transition metal layers (TMO 2 ) further complicate the understanding for newcomers. Therefore, it is critical to summarize and discuss the factors leading to structural degradation and the available strategies for enhancing LTMOs' stability. In this review, the cationic configurations of TMO 2 layers are introduced from a crystallographic perspective. It then identifies and examines four key factors responsible for structural decay, alongside the impacts of various modification strategies. Finally, more effective and practical research approaches for investigating LTMOs have been proposed. The work aims to enhance the comprehension of the structural deterioration of LTMOs and facilitate a substantial improvement in their cycle life and energy density.