Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which was recently shown to be essential for the virus replication cycle. Zeta potential analysis revealed a negative surface charge of LDs, with an average surface charge of ؊19 mV. The titration of LDs with C protein led to an increase of the surface charge, which reached a plateau at ؉13.7 mV, suggesting that the viral protein-LD interaction exposes the protein cationic surface to the aqueous environment. Atomic force microscopy (AFM)-based force spectroscopy measurements were performed by using C proteinfunctionalized AFM tips. The C protein-LD interaction was found to be strong, with a single (un)binding force of 33.6 pN. This binding was dependent on high intracellular concentrations of potassium ions but not sodium. The inhibition of Na ؉ /K ؉ -ATPase in DENV-infected cells resulted in the dissociation of C protein from LDs and a 50-fold inhibition of infectious virus production but not of RNA replication, indicating a biological relevance for the potassium-dependent interaction. Limited proteolysis of the LD surface impaired the C protein-LD interaction, and force measurements in the presence of specific antibodies indicated that perilipin 3 (TIP47) is the major DENV C protein ligand on the surface of LDs.
Dengue virus (DENV) causes the most important arthropodborne human viral disease, with 2.5 billion people at risk, 100 million infections, and more than 20,000 deaths annually, primarily in tropical developing countries (20). Four genetically distinct serotypes (DENV1 to DENV4) have been identified, which are transmitted among humans through the bite of an infected mosquito of the genus Aedes. DENV belongs to the family Flaviviridae, together with other important human pathogens, such as yellow fever virus (YFV), West Nile virus (WNV), and hepatitis C virus (HCV). The clinical manifestations of DENV infection range from a mild illness to a severe and potentially life-threatening disease for which no treatment is available so far, due at least in part to the limited understanding of the molecular mechanisms that underlie the interaction between DENV and its host cells.The DENV genome is a single-stranded positive-sense RNA molecule of approximately 11 kb that is translated from a single open reading frame, generating a polyprotein associated with the endoplasmic reticulum (ER) membrane (34). The polyprotein is cleaved co-and posttranslationally by cellular and viral proteases into three structural proteins (capsid [C], premembrane [prM], and envelope [E]) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B,...