Proteomic identification of human papillomavirus type 16 (HPV16) E6-interacting proteins revealed several proteins involved in ubiquitin-mediated proteolysis. In addition to the well-characterized E6AP ubiquitinprotein ligase, a second HECT domain protein (HERC2) and a deubiquitylating enzyme (USP15) were identified by tandem affinity purification of HPV16 E6-associated proteins. This study focuses on the functional consequences of the interaction of E6 with USP15. Overexpression of USP15 resulted in increased levels of the E6 protein, and the small interfering RNA-mediated knockdown of USP15 decreased E6 protein levels. These results implicate USP15 directly in the regulation of E6 protein stability and suggest that ubiquitylated E6 could be a substrate for USP15 ubiquitin peptidase activity. It remains possible that E6 could affect the activity of USP15 on specific cellular substrates, a hypothesis that can be tested as more is learned about the substrates and pathways controlled by USP15.Human papillomaviruses (HPVs) are associated with several human cancers, most notably human cervical cancer, the second most common cancer among women worldwide (43). Papillomaviruses cause proliferative squamous epithelial lesions, and more than 100 HPV types have been described (14). The HPV types associated with mucosal squamous epithelial lesions have been further classified into high-or low-risk types based on the propensity for the lesions with which they are associated to progress to cancer. Among the high-risk HPV types, HPV type 16 (HPV16) and HPV18 account for approximately 70% of cervical cancers (43). The high-risk HPV types carry two genes, the E6 and E7 genes, which have oncogenic properties and are always expressed in HPV-positive cancers. E6 and E7 interfere with the p53 and retinoblastoma (pRB) tumor suppressor pathways, respectively, and contribute directly to cell cycle alterations, protection from apoptosis, and transformation (14). The dysregulated expression of the E6 and E7 oncoproteins is an important step in the progression from a preneoplastic stage to cancer in HPV-infected cells and is often a consequence of the integration of the viral genome into the host chromosome.The interaction between E6 and p53 is mediated by the E3 ubiquitin ligase E6AP (15). E6, p53, and E6AP form a complex in which E6 directs the ligase activity of E6AP to p53, thereby targeting p53 for ubiquitin-mediated degradation (36). E6, however, has a number of other cellular partners and other functions. For instance, the C terminus of the high-risk E6 protein contains a PDZ binding motif (20,25) that mediates the interaction with several PDZ domain-containing proteins, including discs large (Dlg), Scribble (Scrib), the MAGI family of proteins, MUPP1, and PATJ (9, 10, 29). Some of these proteins are also targeted for degradation in an E6AP-dependent manner (22, 29). While the major mechanism of oncogenesis revolves around E6's ability to inhibit the proapoptotic effects of p53, recent work involving the PDZ domain proteins indica...