2019
DOI: 10.1360/tb-2019-0479
|View full text |Cite
|
Sign up to set email alerts
|

Suppression of Leidenfrost phenomenon of nanodroplets through an external electric field

Abstract: On ferroelectric domain polarization switching mechanism subject to an external electric field by simulations with the phase-field method

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 18 publications
0
0
0
2
Order By: Relevance
“…、微流控系统中液滴无损快速定向输运 [2] 、喷墨打印技术中调控活性染料液滴表 面张力控制液滴形成 [3] 等。有效调控低表面能工质液滴的润湿特性与动力学行为,对拓宽低表面 能工质的应用范围与提高各种应用过程中的利用效率具有十分重要的意义。 改变固体表面微纳结构特征与添加表面涂层是调控固液界面作用的常规手段。近些年,研究 者们通过设计特殊的功能性结构表面,使部分低表面张力液滴在固体表面呈现出疏液状态。Liu 等人 [4] 在硅表面构建了双层凹角微纳米结构,提高了低表面能工质液滴的表观接触角。Wong 等 人 [5] 受自然界中猪笼草表面液滴超疏液行为的启发,构建了润滑剂浸润的多孔结构表面,实现了 多数工质的超疏液性能。Kota 等人 [6] 设计了丝网状微纳米复合结构的超疏油表面,实现了正庚烷 ( = 20.1 mN/m)高运动性能的疏液形态。但上述微纳结构表面加工流程复杂且成本较高,尚 未在工程实践中推广应用。 除了调控固液界面作用外, 也有学者结合外场力对液滴进行精准操控, 如电场 [7] 、磁场 [8] 、热刺激 [9] 和超声波 [10] 等。但通过上述外场力对液滴进行操控具有局限性,如 电场需要液滴具有高介电常数,磁场需要在液滴中添加磁性颗粒可能会污染样本,热驱动不适用 于低沸点易挥发性物质等,且以上外场调控方法不易实现低表面能工质润湿性调控及液滴操纵。 因此,探索更具普适性的润湿特性调控及液滴操纵方法是亟待解决的问题。 Yoshimitsu 等人 [11] 认为,通过合理构造固体表面微纳结构分布可以有效截留微量空气,在微 A c c e p t e d https://engine.scichina.com/doi/10.1360/TB-2021-0559 结构表面形成大比例的液气界面, 大幅度降低固液接触的实际比例。 当固液接触比例降低到零时, 即可实现液滴的悬浮,如 Leidenfrost 现象 [12] 为当液体受热蒸发时,在高温固壁表面与液滴之间 形成一层蒸汽层,使得液滴悬浮在其自身蒸汽层上的现象。这种液滴悬浮现象在液滴输运与操控 方面具有极佳的应用前景。近期对 Leidenfrost 现象的研究也逐渐增多,Graeber 等人 [13] 研究了在 完全刚性表面上 Leidenfrost 液滴自我诱导的自发振荡行为;Liu 等人 [14] 研究发现,Leidenfrost 液 滴在其生命周期中会自发进行一系列不同的运动模式, 他们研究了模式之间的过渡条件并证明了 该条件的普适性; Sobac 等人 [15] 研究了悬浮的 Leidenfrost 液滴在硅油浴中引起的流动以及两者相 互作用产生的流体力学结构;蔡畅等人 [16] 建立了预测 Leidenfrost 温度的模型,并探讨了环境压 力对 Leidenfrost 温度的影响机制;王硕林等人 [17] 采用分子动力学模拟研究了纳米液滴在不同润 湿性表面上的 Leidenfrost 现象。除通过传统手段实现 Leidenfrost 现象外,也有学者通过其他手 段实现类似 Leidenfrost 的悬浮现象,如 Panchanathan 等人 [18] 通过将碳酸水置于超疏水固体表面, 利用液体中气泡的释放在液滴底部形成气垫,实现了液滴的悬浮状态;党超等人 [19] [20] 提出的误差分析方法进行计算, A c c e p t e d https://engine.scichina.com/doi/10.1360/TB-2021-0559 However, such methods have limitations and no significant effect on low surface energy working fluids.…”
unclassified
“…、微流控系统中液滴无损快速定向输运 [2] 、喷墨打印技术中调控活性染料液滴表 面张力控制液滴形成 [3] 等。有效调控低表面能工质液滴的润湿特性与动力学行为,对拓宽低表面 能工质的应用范围与提高各种应用过程中的利用效率具有十分重要的意义。 改变固体表面微纳结构特征与添加表面涂层是调控固液界面作用的常规手段。近些年,研究 者们通过设计特殊的功能性结构表面,使部分低表面张力液滴在固体表面呈现出疏液状态。Liu 等人 [4] 在硅表面构建了双层凹角微纳米结构,提高了低表面能工质液滴的表观接触角。Wong 等 人 [5] 受自然界中猪笼草表面液滴超疏液行为的启发,构建了润滑剂浸润的多孔结构表面,实现了 多数工质的超疏液性能。Kota 等人 [6] 设计了丝网状微纳米复合结构的超疏油表面,实现了正庚烷 ( = 20.1 mN/m)高运动性能的疏液形态。但上述微纳结构表面加工流程复杂且成本较高,尚 未在工程实践中推广应用。 除了调控固液界面作用外, 也有学者结合外场力对液滴进行精准操控, 如电场 [7] 、磁场 [8] 、热刺激 [9] 和超声波 [10] 等。但通过上述外场力对液滴进行操控具有局限性,如 电场需要液滴具有高介电常数,磁场需要在液滴中添加磁性颗粒可能会污染样本,热驱动不适用 于低沸点易挥发性物质等,且以上外场调控方法不易实现低表面能工质润湿性调控及液滴操纵。 因此,探索更具普适性的润湿特性调控及液滴操纵方法是亟待解决的问题。 Yoshimitsu 等人 [11] 认为,通过合理构造固体表面微纳结构分布可以有效截留微量空气,在微 A c c e p t e d https://engine.scichina.com/doi/10.1360/TB-2021-0559 结构表面形成大比例的液气界面, 大幅度降低固液接触的实际比例。 当固液接触比例降低到零时, 即可实现液滴的悬浮,如 Leidenfrost 现象 [12] 为当液体受热蒸发时,在高温固壁表面与液滴之间 形成一层蒸汽层,使得液滴悬浮在其自身蒸汽层上的现象。这种液滴悬浮现象在液滴输运与操控 方面具有极佳的应用前景。近期对 Leidenfrost 现象的研究也逐渐增多,Graeber 等人 [13] 研究了在 完全刚性表面上 Leidenfrost 液滴自我诱导的自发振荡行为;Liu 等人 [14] 研究发现,Leidenfrost 液 滴在其生命周期中会自发进行一系列不同的运动模式, 他们研究了模式之间的过渡条件并证明了 该条件的普适性; Sobac 等人 [15] 研究了悬浮的 Leidenfrost 液滴在硅油浴中引起的流动以及两者相 互作用产生的流体力学结构;蔡畅等人 [16] 建立了预测 Leidenfrost 温度的模型,并探讨了环境压 力对 Leidenfrost 温度的影响机制;王硕林等人 [17] 采用分子动力学模拟研究了纳米液滴在不同润 湿性表面上的 Leidenfrost 现象。除通过传统手段实现 Leidenfrost 现象外,也有学者通过其他手 段实现类似 Leidenfrost 的悬浮现象,如 Panchanathan 等人 [18] 通过将碳酸水置于超疏水固体表面, 利用液体中气泡的释放在液滴底部形成气垫,实现了液滴的悬浮状态;党超等人 [19] [20] 提出的误差分析方法进行计算, A c c e p t e d https://engine.scichina.com/doi/10.1360/TB-2021-0559 However, such methods have limitations and no significant effect on low surface energy working fluids.…”
unclassified
“…珠状冷凝机理模型及传热调控 [3] 、介观相变传热数值模型及其在沸 腾和冷凝传热中的应用 [4] 等方面的研究进展; 然后介绍了分子动 力学数值模拟在从微观上揭示表面润湿性对相变传热影响机理和 超临界流体类沸腾现象方面的研究成果 [5,6] ; 最后呈现复合柱状微 结构和超疏水点阵强化池沸腾换热 [7~9] 、流动沸腾两相流型和换热 性能及歧管式微通道和多孔烧结表面强化流动沸腾换热 [10~12] 以及 相变换热在矩形微通道型和丝网超薄型平板热管中的应用 [13,14]…”
unclassified