Whereas the mammalian fertilization environment consists of possible products of the mutual interaction between oviductal and follicular fluids in addition to both fluid components, little is known regarding the interaction. In the present study, we have demonstrated that a mutual interaction occurs, resulting in the biochemical changes of follicular fluid components. Gelatin zymographic analyses of bovine follicular fluid (bFF) showed consistently a distinct, gelatinolytic activity having a molecular weight of 110 kDa (GA110) in addition to other gelatinases, whereas bovine oviductal fluid (bOF) showed a lack of GA110. Surprisingly, when bFF was mixed with bOF before zymography, the GA110 of bFF mostly disappeared at a 1:1 (v/v) mixture, completely disappeared at a 1:10 mixture, as fast as within 30 min after mixing. Other bFF gelatinase activities were not affected by bOF at 1:1 or 10:1 mixtures. Addition of EDTA or phenanthroline, but not of phenylmethylsulfonyl fluoride or trypsin inhibitor, to the mixture greatly increased the gelatinolytic activity of bFF GA110. The increased activity of bFF GA110 by EDTA was again abolished by subsequent bOF treatment. Addition of aminophenylmercuric acetate to the EDTA-treated bFF also abolished GA110; however, this was accompanied by the disappearance of other gelatinases, except the 62-kDa gelatinase, the activity of which increased as the treatment continued up to 24 h. Addition of EDTA or phenanthroline to the gelatin gel incubation buffer after electrophoresis abolished almost all gelatinases of bFF, except those of 88-84 kDa, demonstrating that they were indeed gelatinases or isoforms. Bovine serum and fetal bovine serum also showed the presence of GA110, the activity of which was increased by EDTA. However, ovarian granulosa cell homogenate did not exhibit GA110. Immunoblot experiments using antibodies against matrix metalloproteinase (MMP)-2 and MMP-9 demonstrated that bFF GA110 was an isoform of MMP-2, and that the 62-kDa form was an active form of MMP-2. Disappearance of immunoreactive GA110 of bFF and serum by bOF was also observed. Based on these observations, we conclude that bFF and bovine serum share a unique isoform of MMP-2, and that bOF can specifically degrade the isoform, suggesting that a mutual interaction between bFF and bOF could occur at the time of ovulation.