We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon-photon interaction via the backward stimulated Brillouin scattering (BSBS) process. The coherent photon-phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator. The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly. When the Duffing nonlinearity is weak, the squeezing degree of the mechanical mode in the presence of BSBS can be improved more than one order of magnitude compared with the absence of BSBS. Our scheme may be extended to other quantum systems to study novel quantum effects