Abstract
Background: Acute lymphoblastic leukemia (ALL) is an aggressive hematopoietic malignancy that is most common in children. Alantolactone (ALT) has been reported to have antitumor activity in different types of cancers. This study aimed to investigate the antitumor activity and molecular mechanism of ALT in ALL. Methods: The ALL cell lines were treated with 1, 5 and 10μM of ALT, and then subjected to MTT assay and RNA sequencing. Flow cytometry, JC-1 staining and immunofluorescence staining assays were employed to measure cell apoptosis and autophagy. Meanwhile, Western blot analysis was used to detect apoptosis and autophagy related proteins. Finally, the effect of ALT on tumor growth was measured in BV173 xenograft nude mouse model. Results: In this study, we demonstrated that ALT inhibited the proliferation of ALL cells in does-dependent manner. A series of experiments demonstrated that ALT inhibited cell proliferation, colony formation, autophagy, induced apoptosis and restained tumor growth in vivo through upregulating adaptor related protein complex 2 subunit mu 1 (AP2M1). Moreover, autophagy activator rapamycin attenuated the pro-apoptotic effect of ALT on BV173 and NALM6 cell lines. Further, overexpressed AP2M1 decreased the expression of Beclin1, LC3-II/LC3-1 ratio and increased p62 expression. Fianally, knockdown of Beclin1 increased the levels of bax, cleaved caspase 3 and cytochrome C and decreased bcl-2 expression. Conclusions: This study demonstrated that ALT exerts antitumor activity through inducing apoptosis and inhibiting autophagy by upregulating AP2M1 in ALL, indicating a potential therapeutic strategy for ALL treatment.