Ureido-heterocycles exhibiting different triple- and quadruple H-bonding patterns are useful building blocks in the construction of supramolecular polymers, self-healing materials, stimuli-responsive devices, catalysts and sensors. The heterocyclic group may provide hydrogen bond donor/acceptor sites to supplement those in the urea core, and they can also bind metals and can be modified by pH, redox reactions or irradiation. In the present review, the main structural features of these derivatives are discussed, including the effect of tautomerization and conformational isomerism on self-assembly and complex formation. Some examples of their use as building blocks in different molecular architectures and supramolecular polymers, with special emphasis on biomedical applications, are presented. The role of the heterocyclic functionality in catalytic and sensory applications is also outlined.