Inspired by the structures and functions of natural channel proteins that selectively permeate ions and molecules across biological membranes, synthetic molecules capable of self-assembling into supramolecular nanotubes within the hydrophobic layer of the membranes have been designed and their material permeation properties have been studied. More recently, synthetic chemists have ventured to incorporate fluorine atoms, elements rarely found in natural proteins, into the structure of synthetic channels and discovered anomalous transmembrane material permeation properties. In this Perspective, the author provides a brief overview of recent advances in the development of fluorinated nanochannels and possible directions for the future.