Neural circuitry controlling limbed locomotion is located in the spinal cord, known as Central Pattern Generators (CPGs). After a traumatic Spinal Cord Injury (SCI), ascending and descending tracts are damaged, interrupting the communication between CPGs and supraspinal structures that are fundamental to initiate, control and adapt movement to the environment. Although low vertebrates and some mammals regain some physiological functions after a spinal insult, the capacity to recover in hominids is rather limited. The consequences after SCI include physiological (sensory, autonomic and motor) and mental dysfunctions, which causes a profound impact in social and economic aspects of patients and their relatives Despite the recent progress in the development of therapeutic strategies for SCI, there is no satisfactory agreement for choosing the best treatment that restores the affected functions of people suffering the devastating consequences after SCI. Studies have described that patients with chronic SCI can achieve some degree of neurorestoration with strategies that include physical rehabilitation, neuroprosthesis, electrical stimulation or cell therapies. Particularly in the human, the contribution of supraspinal structures to the clinical manifestations of gait deficits in people with SCI and its potential role as therapeutic targets is not well known. Additionally, mental health is considered fundamental as it represents the first step to overcome daily adversities and to face progression of this unfortunate condition. This chapter focuses on the consequences of spinal cord disconnection from supraspinal structures, from motor dysfunction to mental health. Recent advancements on the study of supraspinal structures and combination of different approaches to promote recovery after SCI are discussed. Promising strategies are used alone or in combination and include drugs, physical exercise, robotic devices, and electrical stimulation.